Home
Class 14
MATHS
The quotient of 8x^(3) - y^(3) when divi...

The quotient of `8x^(3) - y^(3)` when divided by `2xy + 4x^(2) + y^(2)` is

A

2x + y

B

x + 2y

C

2x - y

D

4x - y

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The quotient of 8x^(3) - 7x^(2) + 5x + 8 when divided by 2x is ____

What is the quotient when (x^(3) + 8) is divided by (x^(2) - 2x + 4) ?

Write the quotient and remainder when we divide : (8x^(4) + 10x^(3) - 5x^(2) - 4 x + 1) by (2x^(2) + x - 1)

Write the quotient and remainder when we divide : (2x^(3) - 5x^(2) + 8x - 5) by (2x^(2) - 3x + 5)

If (x ^( 3//2) - xy ^(1//2)+ x ^(1//2) y - y ^(3//2)) is divided by (x ^( 1//2) - y ^(1//2)), the quotient is :

Divide: (i) 8x^(2) y^(2) by - 2xy (ii) -15 x^(3) yz^(3) by -5xyz^(2)

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

(b) Factorize 4x^(3) - 10y^(3) - 8x^(2) y + 5xy^(2)

Find HCF of x^(3) + 3x^(2) y + 2xy^(2) and x^(4) + 6x^(3)y + 8x^(2) y^(2)