Home
Class 14
MATHS
The non-zero solution of the equation (a...

The non-zero solution of the equation `(a-x^(2))/(bx) - (b-x)/(c) = (c-x)/(b) - (b - x^(2))/(c x)`, where `b ne 0, c ne 0` is

A

`(b^(2) + a c)/(b^(2) + c^(2))`

B

`(b^(2) - a c)/(b^(2) - c^(2))`

C

`(b^(2) - a c)/(b^(2) + c^(2))`

D

`(b^(2) + a c)/(b^(2) - c^(2))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

The roots of the quadratic equation (a+b-2c)x^(2)+(2a-b-c)x+(a-2b+c)=0 are

Let a, b, c be non-zero real roots of the equation x^(3)+ax^(2)+bx+c=0 . Then

Statement -1: If a^(2)+b^(2)=c^(2),c ne 0 then the non zero solution of the equation sin^(-1)((ax)/(c ))+sin^(-1)((bx)/(c))=sin^(-1)x is pm 1,. Statement-2: sin^(-1)x+sin^(-1)y= sin^(-1)(x+y)