Home
Class 8
MATHS
Find three consecutive numbers such that...

Find three consecutive numbers such that if they are divided by 10, 17 and 26 respectively, the sum of their quo tients will be 10. (Hint: Let the con secutive numbers =x, x+ 1,x +2, then `x/10+(x+1)/17+(x+2)/26=10)`

Text Solution

Verified by Experts

The correct Answer is:
`(7675)/(173)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of three consecutive multiples of 7 is 777. Find these multiples. (Hint: Three consecutive multiples of 7 are 'x', 'x+ 7', x + 14).

If x+1/x=2costheta then x^(10)+(1)/(x^(10))=

If the sum of the coefficients in the expansion of (1-3x+10x^2)^n is a and if the sum of the coefficients in the expansion of (1+x^2)^n is b, then

Find the number of distinct terms in the expansion (x+ y + z)^10+ (x + y - z)^10

Find Deltay and dy for the function y = x^(2) + x , when x = 10 , Delta x = 0 . 1

If x+(1)/(x)=2costheta" then "x^(10)+(1)/(x^(10))

Sum of the zeros of x^(2) + 7x + 10 is …………….