Home
Class 10
MATHS
A ball is thrown vertically upward from ...

A ball is thrown vertically upward from the top of a building 96feet tall with an initial velocity of 80feet per second. The distance S (in feet )of the ball from the ground, after t seconds is `S = 96 + 80t − 16t^(2)`. After how many seconds does the ball strike the ground.

Text Solution

Verified by Experts

The correct Answer is:
6 seconds
Promotional Banner

Similar Questions

Explore conceptually related problems

A ball is thrown vertically upwards from the top of a building of height 29.4m and with an initial velocity 24.5 m/sec. If the height H of the ball from the ground level is given by H = 29.4 + 24.5t - 4.9t^(2) , then find the time taken by the ball to reach the ground.

A ball is tossed from the window of a building with an initial velocity of 8 ms^-1 at an angle of 20^@ below the horizontal . It strikes the ground 3 s later. From what height was the ball thrown? How far from the base of the building does the ball strike the ground?

If a ball is thrown vertically upwards with speed u, the distance covered during the last t seconds of its ascent is

A ball is thrown vertically upwards with a velocity of 20ms^-1 from the top of a multistorey building. The height of the point from where the ball is thrown is 25.0 m from the ground. How high will the ball rise?

A ball is thrown vertically upwards with a velocity of 20 ms^(-1) from the top of a multistorey building. The height of the point from where the ball is thrown is 25.0 m from the ground. (a) How high will the ball rise ? and (b) how long will it be before the ball hits the ground ? Take g = 10 ms^(-2) .