Home
Class 10
MATHS
Prove that a line joining the mid points...

Prove that a line joining the mid points of any two sides of a Triangle is parallel to the third side. (Using Converse of Basis Proportionality theorem)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the line segment joining the midpoints of the two sides of a triangle is half of the third side.

The sum of any two sides of a triangle must be __ the third side.

Prove that a line drawn through the mid-point of one side of a Triangle parallel to another side bisects the third side (Using Basic proportionality theorem).

The figure formed by joining the mid-points of sides of a rectangle is

The line joining the mid point of one side of a triangle from opposite vertex in called ......

The sum of lengths of any two sides of a triangle is ............. the third side of the triangle.

Fill in the Blanks: The difference between any two sides of a triangle is______ the third side.

The line joining a vertex and the inid point of its opposite side is called.

Two sides of a right triangle are 3cm and 4cm then the third side is ……….cm.