Home
Class 9
MATHS
(4-sqrt5)/sqrt10...

`(4-sqrt5)/sqrt10`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=(sqrt5+sqrt10)/(sqrt10-sqrt5) and b=(sqrt10-sqrt5)/(sqrt10+sqrt5) show that sqrta-sqrtb-2sqrt(ab)=0

The expression (15(sqrt10+sqrt5))/(sqrt10+ sqrt20+sqrt 40-sqrt 5-sqrt80) is equal to: (15(sqrt10+sqrt5))/(sqrt10+ sqrt20+sqrt 40-sqrt 5-sqrt80) का मान ज्ञात कीजिए?

simplify :(4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5))

Simplify: (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5))

Simplify each of the following : (3)/(5-sqrt(3))+(2)/(5+sqrt(3)) (ii) (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5))(sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+2)/(sqrt(5)-2)

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

If (4+3sqrt(5))/(sqrt(5))=a+b sqrt(5), bis

Evaluate : (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(50)), is being given that sqrt(5)=2.236 and sqrt(10)=3.1362

Evaluate (15)/(sqrt(10)+sqrt(20)+sqrt(40)-sqrt(5)-sqrt(80)) is being given that sqrt(5)=2.236 and sqrt(10)=3.162