Home
Class 10
MATHS
If tan theta + sec theta = n, then sec ^...

If `tan theta + sec theta = n,` then `sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =`

A

`n-1`

B

`n ^(2)`

C

`(1)/(n ^(2))`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sec^4 \theta - \tan^4 \theta - 2 \sec \theta \tan \theta \) given that \( \tan \theta + \sec \theta = n \). ### Step-by-Step Solution: 1. **Start with the given expression**: \[ \sec^4 \theta - \tan^4 \theta - 2 \sec \theta \tan \theta \] 2. **Use the identity for the difference of squares**: We can express \( \sec^4 \theta - \tan^4 \theta \) as: \[ \sec^4 \theta - \tan^4 \theta = (\sec^2 \theta + \tan^2 \theta)(\sec^2 \theta - \tan^2 \theta) \] 3. **Recall the Pythagorean identity**: We know that: \[ \sec^2 \theta - \tan^2 \theta = 1 \] Therefore, substituting this into our expression gives: \[ \sec^4 \theta - \tan^4 \theta = (\sec^2 \theta + \tan^2 \theta)(1) = \sec^2 \theta + \tan^2 \theta \] 4. **Substituting back into the expression**: Now we can rewrite our original expression: \[ \sec^2 \theta + \tan^2 \theta - 2 \sec \theta \tan \theta \] 5. **Recognize another identity**: We can express \( \sec^2 \theta + \tan^2 \theta \) as: \[ \sec^2 \theta + \tan^2 \theta = (\sec \theta + \tan \theta)^2 - 2 \sec \theta \tan \theta \] Thus, our expression becomes: \[ (\sec \theta + \tan \theta)^2 - 2 \sec \theta \tan \theta - 2 \sec \theta \tan \theta \] Simplifying this gives: \[ (\sec \theta + \tan \theta)^2 - 4 \sec \theta \tan \theta \] 6. **Substituting \( n \)**: Since \( \sec \theta + \tan \theta = n \), we have: \[ n^2 - 4 \sec \theta \tan \theta \] 7. **Finding \( \sec \theta \tan \theta \)**: We know from the identity \( \sec^2 \theta - \tan^2 \theta = 1 \) that: \[ \sec^2 \theta + \tan^2 \theta = n^2 - 2 \tan \theta \sec \theta \] Hence, we can find \( \sec \theta \tan \theta \) using: \[ \sec \theta \tan \theta = \frac{n^2 - 1}{2} \] 8. **Final substitution**: Substitute \( \sec \theta \tan \theta \) back into the expression: \[ n^2 - 4 \left(\frac{n^2 - 1}{2}\right) = n^2 - 2(n^2 - 1) = n^2 - 2n^2 + 2 = 2 - n^2 \] ### Final Answer: \[ \sec^4 \theta - \tan^4 \theta - 2 \sec \theta \tan \theta = 2 - n^2 \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION B|20 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION C|10 Videos
  • SAMPLE PAPER 5

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V) |4 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V) |8 Videos

Similar Questions

Explore conceptually related problems

If cot theta - tan theta = sec theta , then theta=

If sec theta + tan theta = 4 , then sec theta- tan theta =?

sec^(4)theta-tan^(4)theta=sec^(2)theta+tan^(2)theta

Prove that: 1/(sec theta - tan theta) = sec theta + tan theta .

Prove that (1)/(sec theta - tan theta) = sec theta + tan theta

If : sec theta * tan theta (sectheta + tan theta) + (sec theta - tan theta) = sec^(n) theta + tan^(n) theta, "then" : n = A)1 B)2 C)3 D)4

If sec theta + tan theta = 12.5 , then sec theta - tan theta = ?

(1+sec theta-tan theta)/(1+sec theta+tan theta)=

If cot theta-tan theta=sec theta then theta=