Home
Class 10
MATHS
What is the value of (sin 45^@)/(sec30^@...

What is the value of `(sin 45^@)/(sec30^@ + cosec 30^@) ? `

A

`(sqrt3 - 1)`

B

`(sqrt3 (sqrt3 - 1))/(4sqrt2)`

C

`4sqrt2`

D

`sqrt3 (sqrt3 - 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((\sin 45^\circ) / (\sec 30^\circ + \csc 30^\circ)\), we will follow these steps: ### Step 1: Calculate \(\sin 45^\circ\) The value of \(\sin 45^\circ\) is known to be: \[ \sin 45^\circ = \frac{1}{\sqrt{2}} \] ### Step 2: Calculate \(\sec 30^\circ\) The secant function is the reciprocal of the cosine function. Therefore: \[ \sec 30^\circ = \frac{1}{\cos 30^\circ} \] The value of \(\cos 30^\circ\) is \(\frac{\sqrt{3}}{2}\), so: \[ \sec 30^\circ = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] ### Step 3: Calculate \(\csc 30^\circ\) The cosecant function is the reciprocal of the sine function. Hence: \[ \csc 30^\circ = \frac{1}{\sin 30^\circ} \] The value of \(\sin 30^\circ\) is \(\frac{1}{2}\), so: \[ \csc 30^\circ = \frac{1}{\frac{1}{2}} = 2 \] ### Step 4: Combine \(\sec 30^\circ\) and \(\csc 30^\circ\) Now we can add \(\sec 30^\circ\) and \(\csc 30^\circ\): \[ \sec 30^\circ + \csc 30^\circ = \frac{2}{\sqrt{3}} + 2 \] To add these fractions, we need a common denominator. The common denominator is \(\sqrt{3}\): \[ \sec 30^\circ + \csc 30^\circ = \frac{2}{\sqrt{3}} + \frac{2\sqrt{3}}{\sqrt{3}} = \frac{2 + 2\sqrt{3}}{\sqrt{3}} = \frac{2(1 + \sqrt{3})}{\sqrt{3}} \] ### Step 5: Substitute back into the original expression Now we substitute back into the original expression: \[ \frac{\sin 45^\circ}{\sec 30^\circ + \csc 30^\circ} = \frac{\frac{1}{\sqrt{2}}}{\frac{2(1 + \sqrt{3})}{\sqrt{3}}} \] This can be simplified by multiplying by the reciprocal: \[ = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2(1 + \sqrt{3})} = \frac{\sqrt{3}}{2\sqrt{2}(1 + \sqrt{3})} \] ### Step 6: Rationalize the denominator To rationalize the denominator, we multiply the numerator and denominator by \(1 - \sqrt{3}\): \[ = \frac{\sqrt{3}(1 - \sqrt{3})}{2\sqrt{2}((1 + \sqrt{3})(1 - \sqrt{3}))} \] Calculating the denominator: \[ (1 + \sqrt{3})(1 - \sqrt{3}) = 1 - 3 = -2 \] Thus, we have: \[ = \frac{\sqrt{3}(1 - \sqrt{3})}{-4\sqrt{2}} = -\frac{\sqrt{3}(1 - \sqrt{3})}{4\sqrt{2}} \] ### Final Answer The value of \(\frac{\sin 45^\circ}{\sec 30^\circ + \csc 30^\circ}\) simplifies to: \[ -\frac{\sqrt{3}(1 - \sqrt{3})}{4\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION B|20 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION- C |10 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V)|4 Videos

Similar Questions

Explore conceptually related problems

What is the value of (sin 45^(@))/(sec 30^(@)+ "cosec" 30^(@))?

Find the value of (sin 45^@)/(sin 30^@)

What is the value of ((1)/(2)-sec30^(@)) ?

The value of 2tan 45^(@)- sec 60^(@)+ cosec 30^(@) is

Evaluate (cos 45^(@))/(sec 30^(@) + cos 30^(@))

Evaluate : (cos 45^(@))/(sec30^(@)+"cosec "30^(@))