Home
Class 10
MATHS
Evaluate 0.bar(68) +0.bar(73)....

Evaluate `0.bar(68) +0.bar(73)`.

A

`1.bar(31)`

B

`1.bar(42)`

C

`1.bar(21)`

D

`1.0bar1`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(0.\overline{68} + 0.\overline{73}\), we will follow a systematic approach to convert each repeating decimal into a fraction and then add them together. ### Step 1: Convert \(0.\overline{68}\) into a fraction Let \(x = 0.\overline{68}\). Multiply both sides by 100 (since the repeating part has 2 digits): \[ 100x = 68.\overline{68} \] Now, we have: 1. \(x = 0.\overline{68}\) (Equation 1) 2. \(100x = 68.\overline{68}\) (Equation 2) ### Step 2: Subtract Equation 1 from Equation 2 Subtract Equation 1 from Equation 2: \[ 100x - x = 68.\overline{68} - 0.\overline{68} \] This simplifies to: \[ 99x = 68 \] ### Step 3: Solve for \(x\) Now, divide both sides by 99: \[ x = \frac{68}{99} \] Thus, \(0.\overline{68} = \frac{68}{99}\). ### Step 4: Convert \(0.\overline{73}\) into a fraction Let \(y = 0.\overline{73}\). Multiply both sides by 100: \[ 100y = 73.\overline{73} \] Now, we have: 1. \(y = 0.\overline{73}\) (Equation 3) 2. \(100y = 73.\overline{73}\) (Equation 4) ### Step 5: Subtract Equation 3 from Equation 4 Subtract Equation 3 from Equation 4: \[ 100y - y = 73.\overline{73} - 0.\overline{73} \] This simplifies to: \[ 99y = 73 \] ### Step 6: Solve for \(y\) Now, divide both sides by 99: \[ y = \frac{73}{99} \] Thus, \(0.\overline{73} = \frac{73}{99}\). ### Step 7: Add the two fractions Now we can add the two fractions: \[ 0.\overline{68} + 0.\overline{73} = \frac{68}{99} + \frac{73}{99} \] Since they have the same denominator, we can combine them: \[ = \frac{68 + 73}{99} = \frac{141}{99} \] ### Step 8: Simplify the fraction To simplify \(\frac{141}{99}\), we can divide both the numerator and denominator by their greatest common divisor (GCD). The GCD of 141 and 99 is 3: \[ \frac{141 \div 3}{99 \div 3} = \frac{47}{33} \] ### Step 9: Convert to decimal To convert \(\frac{47}{33}\) to a decimal, we perform the division: \[ 47 \div 33 \approx 1.424242\ldots \] This can be expressed as: \[ 1.\overline{42} \] ### Final Answer Thus, the final result of \(0.\overline{68} + 0.\overline{73}\) is: \[ \boxed{1.\overline{42}} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION B|20 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION C|10 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION- C |10 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate 0.bar(65) + 2.bar(61) .

Evaluate 2.bar(6)+0.bar(9)

Evaluate 3.bar(2)-0.bar(16)

Evaluate : 2.bar(5)-0.bar(35)

Evaluate : 1.bar(45)+0.bar(3)

The value of (0.bar(63) + 0.bar(37)) is

0.34bar(67)+0.13bar(33)

Find the sum 0.bar(68)+0.bar(73)