Home
Class 10
MATHS
Find the value of 1/alpha + 1/beta if al...

Find the value of `1/alpha + 1/beta` if `alpha` and `beta` are the zeroes of the polynomial `x^2 + x + 1.`

A

1

B

0

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) where \( \alpha \) and \( \beta \) are the zeroes of the polynomial \( x^2 + x + 1 \), we can follow these steps: ### Step 1: Identify the polynomial The given polynomial is: \[ x^2 + x + 1 \] ### Step 2: Use Vieta's Formulas According to Vieta's formulas for a quadratic polynomial \( ax^2 + bx + c \): - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) Here, \( a = 1 \), \( b = 1 \), and \( c = 1 \). ### Step 3: Calculate the sum of the roots Using Vieta's formulas: \[ \alpha + \beta = -\frac{1}{1} = -1 \] ### Step 4: Calculate the product of the roots Using Vieta's formulas: \[ \alpha \beta = \frac{1}{1} = 1 \] ### Step 5: Find \( \frac{1}{\alpha} + \frac{1}{\beta} \) We can express \( \frac{1}{\alpha} + \frac{1}{\beta} \) in terms of \( \alpha + \beta \) and \( \alpha \beta \): \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} \] ### Step 6: Substitute the values Substituting the values we found: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-1}{1} = -1 \] ### Final Answer Thus, the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) is: \[ \boxed{-1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION C|10 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise PART - A (SECTION - I) |42 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V) |8 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION- C |10 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise PART - B (SECTION - V)|4 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeroes of the polynomial x^(2)+x+1, then (1)/(alpha)+(1)/(beta) =

If alpha and beta are the zeroes of polynomial x^2+x+1 .So find the value of 1/alpha-1/beta.

Knowledge Check

  • Find the value of 1/alpha + 1/beta are the zeroes of the polynomial x^2 + x + 1.

    A
    1
    B
    0
    C
    -1
    D
    2
  • Find the value of alpha beta^(2)+beta alpha^(2), if alpha and beta are the zeroes of polynomial 3x^(2)+4x+2.

    A
    `3/7`
    B
    `1/9`
    C
    `-8/9`
    D
    `7/8`
  • If alpha, beta are the zeros of the polynomial x^(2) + 6x+2" then " (1/alpha+1/beta)=?

    A
    3
    B
    `-3`
    C
    12
    D
    `-12`
  • Similar Questions

    Explore conceptually related problems

    IF alpha and beta are the zeroes of the polynomial p(x)=4x^2-2x-3 find the value of 1/alpha+1/beta

    If alpha and beta are the zeroes of the polynomial 2x^(2)-4x+5 find the value of alpha^(2)+beta^(2)

    If alpha,beta are the zeroes of the polynomial x^(2)-p(x+1)-q , then (alpha+1)(beta+1)=

    If alpha, beta are the zeros of the polynomial f(x) = x^2 – 3x + 2 , then find 1/alpha + 1/beta .

    If alpha,beta are the zeros of the quadratic polynomial x^(2)+ax+b and gamma,delta be the zeros of the polynomial x^(2)-ax+(b-2) ,Given that (1)/(alpha)+(1)/(beta)+(1)/(gamma)+(1)/(delta)=(5)/(12) and alpha beta gamma delta=24. Find the value of a