Home
Class 12
MATHS
If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)...

If `bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k)` then find `bar(a)timesbar(b)` and unit vector perpendicular to both `bar(a)` and `bar(b)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=bar(i)+bar(j)+bar(k) , bar(b)=bar(i)+2bar(j)+3bar(k) then a unit vector perpendicular to both vectors (bar(a)+bar(b)) and (bar(a)-bar(b)) is

If bar(a)=2bar(i)+bar(j)+2bar(k),bar(b)=5bar(i)-3bar(j)+bar(k), then the length of the component vector of b perpendicular to a is

Let bar(a)=2bar(i)+bar(j)+bar(k),bar(b)=bar(i)+2bar(j)-bar(k) and a unit vector bar(c) be coplanar.If bar(c) is perpendicular to bar(a), then bar(c) is

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

If bar(a)=a_(1)bar(i)+b_(1)bar(j)+c_(1)bar(k),bar(b)=a_(2)bar(i)+b_(2)bar(j)+c_(3)bar(k) ,then bar(a)*bar(b)

If bar(a)=bar(i)+2bar(j)+bar(k),bar(b)=2bar(j)+bar(k)-bar(i), then component of bar(a) perpendicular to bar(b) is

If bar(a)=2bar(i)-3bar(j)+6bar(k) , bar(b)=-2bar(i)+2bar(j)-bar(k) and k =(the projection of bar(a) on bar(b)) /(the projection of bar(b) on bar(a)) then the value of 3k=

If bar(a)=2bar(i)-3bar(j)+6bar(k), bar(b)=-2bar(i)+2bar(j)-bar(k) and lambda=(the projection of bar(a) on bar(b))/( the projection of bar(b) on bar(a)) then the value of lambda is

If bar(a)=2bar(i)-bar(j)-bar(k),bar(b)=bar(i)+2bar(j)-3bar(k) and bar(c)=3mp mubar(j)+5bar(k) are coplanar then mu root of the equation