Home
Class 11
MATHS
If (2)/(b)=(1)/(a)+(1)/(c), then the val...

If `(2)/(b)=(1)/(a)+(1)/(c)`, then the value of `(log(a+c)+log(a-2b+c))/(log(a-c))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If log(a+c)+log(a+c-2b)=2log(a-c) then

if c(a-b)=a(b-c) then (log(a+c)+log(a-2b+c))/(log(a+c)) is equal to

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

The value of log(log_(b)a.log_(c)b*log_(d)c.log_(a)d)is

If a=2^(b),b=prod_(c=2)^(15)log_(c)(c+1) ,then the value of log_(2)(log_(16) a) is :

If a=b^(2)=c^(3)=d^(4), then the value of log_(a)(abcd) would be a.(log_(a)1+(log)_(a)2+(log)_(a)3+(log)_(a)4b(log)_(a)24c.1+(1)/(2)+(1)/(3)+(1)/(4)d1+(1)/(2!)+(1)/(3!)+(1)/(4!)

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)