Home
Class 12
MATHS
The value of the determinant |(1, cos(a...

The value of the determinant
`|(1, cos(alpha-beta),cosalpha),(cos(alpha-beta),1, cosbeta),(cosalpha, cosbeta, 1)|` is:

A

0

B

1

C

`alpha^2-beta^2`

D

`alpha^2+beta^2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

cos (alpha-beta) quad cos (alpha-beta), cos alpha1, cos betacos alpha, cos beta, 1] |

If alpha and beta are the roots of x^2-px+q=0, then the value of |[1,cos(beta-alpha),cosalpha],[cos(alpha-beta),1,cosbeta],[cosalpha,cosbeta,1]| is

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

The value of the determinant ,cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]| is equal

The maximum value of determinant |{:(cos(alpha+beta),sin alpha,-cos alpha),(-sin(alpha+beta),cos alpha, sin alpha),(cos 2beta,sin beta, cos beta):}| is ___________

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

(1+cosalphacosbeta)^2-(cosalpha+cosbeta)^2=

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-