Home
Class 12
MATHS
If sin x+sin^2x=1, then cos^6x+cos^(12)x...

If `sin x+sin^2x=1`, then `cos^6x+cos^(12)x+3cos^(10)+3cos^8x` is equal to :

A

1

B

`cos^3xsin^3x`

C

0

D

`infty`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

If sin^(2)x+sin x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1=

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

41. If sin x+sin^(2)x=1, then the value of expression cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1 is equal to

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to