Home
Class 12
MATHS
If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx)is ...

If `2^(x)+2^(y)=2^(x+y)` then `(dy)/(dx)`is equal to

A

`((2^x+2^y)/(2^x-2^y))`

B

`((2^x+2^y))/((1+2^(x+y)))`

C

`2^(x-y)((2^y-1)/(1-2^x))`

D

`(2^(x+y)-2^x)/2^y`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(x)+2^(y)=2^(x+y) then find (dy)/(dx)

" If 2^(x)+2^(y)=x+y, then (dy)/(dx) is equal to "

If 2^(x) +2y =2^(x+y),then (dy)/(dx)=

If (y/x) + (x/y)=2 , then (dy)/(dx) is equal to

If y^(x) = x^(y) , "then" (dy)/(dx) is equal to

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

If x+y=2^(y), then (dy)/(dx) equals-

If x^(y) = 2^(x-y) , then (dy)/(dx) =?

If x^y=y^x , then (dy)/(dx) is equal to......

If y=x^(x^(2)), then (dy)/(dx) equals