Home
Class 12
MATHS
If A= bar([1,0,-1],[0,2,-3],[2,1,0]) and...

If `A= bar([1,0,-1],[0,2,-3],[2,1,0])` and B=adjA and C=5A then `bar(adjB)/bar{c]`

A

5

B

25

C

(-1)

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A , then find the value of (|adjB|)/(|C |)

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

Let bar(a) =(1,1,-1), bar(b) =(5,-3,-3) and bar(c) =(3,-1,2). If bar(r) is collinear with bar(c) and has length (|bar(a)+bar(b)|)/(2) then bar(r)

If |bar(a)| =2 and |bar(b)|=3 and bar(a) .bar(b)=0 then |(bar(a)times(bar(a)times(bar(a)times(bar(a)timesbar(b)))))| (A) 16 (B) 32 (C) 48 (D) 0

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) but in the opposite direction is

If bar(a)=(2,1,-1),bar(b)=(1,-1,0),bar(c)=(5,-1,1) then the unit vector parallel to bar(a)+bar(b)-bar(c) , but in the opposite direction is