Home
Class 12
PHYSICS
The relation gives the value of x as x=(...

The relation gives the value of x as `x=((a^3b^3))/((csqrtd))`. Find the percentage error in x, if the percentage error in a, b, c, d, are `2%, 1%, 2%`, and `4%` respectively :

A

`+-13%`

B

`+-5%`

C

`+-9%`

D

`+-8%`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The relation gives the value of 'x' x=(a^(3)b^(3))/(csqrt(d)) Find the percentage error in 'x' if the percentagr error in a,b,c and d are 2%, 1%, 3% and 4% respectively.

A physical quantity X is given by X=(a^(2)b^(2))/(sqrt(c).d) Find the relative error and percentage error in X if percentage errors in a,b,c and d are 1%,3%,4% and 2% respectively.

A physical quantity x is calculated from the relation x = ( a^(2) b^(3))/(c sqrt( d)) . If the percentage error in a, b , c , and d are 2% , 1% , 3%, and 4% , respectively , what is the percentage error in x ?

A physical quantity P is related to four observables A, B, C and D as P=4pi^(2)A^(3)B^(2)//(sqrt(C)D) . The percentage error of the measurement in A, B, C and D are 1%, 3%, 2% and 4% respectively. The percentage error is 2a% and absolute error in the quantity P is b/2 . Find 'a' and 'b' if value of P is 3.57.

A physical quantity A is related to four observable a,b,c and d as follows, A=(a^2b^3)/(csqrtd) , the percentage errors of measurement is a,b,c and d,are 1% , 3% , 2% and 2% respectively. What is the percentage error in the quantity A?

A physical quantity z depends of four obserbles a, b, c and d, as z = (a^2b^(2/3))/(sqrtc d^3) . The percentages of error in the measurement of a,b,c and d are 2%, 1.5%, 4% and 2.5% respectively. The peracentage of error in z is :

A physical quantity P is related to four observables a, b, c and d as P=a^(3)b^(2)//sqrtcd . The percentage errors in the measurements of a, b, c and d are 1%, 3% 4% and 2% respectively. What is the percentage error in the quantity P? If the value of P calculated using this formula turns out to be 3.763 , to what value should you round off the result?