Home
Class 12
MATHS
f(x) = x^2 increases on: (a) (0,oo) ...

f(x) = `x^2` increases on:
(a) (`0,oo)`
(b) `(-oo,0)`
(c) (-7,-3)
(d)`(-oo,-3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The interval of increase of the function f(x)=x-e^(x)+tan(2 pi/7) is (a) (0,oo)(b)(-oo,0)(c)(1,oo)(d)(-oo,1)

Given that f'(x) > g'(x) for all real x, and f(0)=g(0). Then f(x) < g(x) for all x belong to (a) (0,oo) (b) (-oo,0) (c) (-oo,oo) (d) none of these

The function f(x)=cot^(-1)x+x increases in the interval (a)(1,oo)(b)(-1,oo)(c)(-oo,oo)(d)(0,oo)

The function f(x)=x^(9)+3x^(7)+64 is increasing on (a) R(b)(-oo,0)(c)(0,oo) (d) R_(0)

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )

If the function f(x)=x^(2)-kx+5 is increasing on [2,4], then (a) k in(2,oo)(b)k in(-oo,2)(c)k in(4,oo)(d)k in(-oo,4)

Find the intervals in which the function f given by f(x) = x^2 - 4x + 6 is strictly increasing: a)(-oo,2) uu (2,oo) b) (2,oo) c) (-oo,2) d) (-oo,2] uu (2,oo)

Find the intervals in which the function f given by f(x) = x^2 - 4x + 6 is strictly increasing: a)(-oo,2) uu (2,oo) b) (2,oo) c) (-oo,2) d) (-oo,2] uu (2,oo)

The set of points where the function f(x)=x|x| is differentiable is (a)(-oo,oo) (b) (-oo,0)uu(0,oo)(c)(0,oo)(d)[0,oo]

The function f(x)= (x)/(1+|x|) is differentiable on (A) (0 oo) 0 oo) (B) (-oo 0) (C) (D) all the above