Home
Class 12
MATHS
(dy)/(dx)+ytanx = secx...

`(dy)/(dx)`+`ytanx = secx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)-ytanx=e^xsecx

Solution of the differential equation cos^(2)x(dy)/(dx)=ytanx is

Solution of the differential equation (dy)/(dx)+ytanx=x^(n)cosx is

The Bernouli's equation (dy)/(dx)-ytanx=(sinxcos^(2)x)/(y^(2)) can be transformed to

secx (dy)/(dx) -y = sin x

The solution of the differential equation (dy)/(dx)=secx-ytanx is :

x (dy)/(dx) - y = 2x ^(2) secx

(d)/(dx)((secx+tanx)/(secx-tanx))=