Home
Class 11
MATHS
Number of integral values of x, satisfyi...

Number of integral values of x, satisfying function `f(x) = log(x-1) + log(3-x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=log x

The function f(x)=x log x

Number of integral value of x satisfying log_(4)|x|<1 is equal to

The total number of integral value of x satisfying the equation x ^(log_(3)x ^(2))-10=1 //x ^(2) is

If sum of the integral values of x satisfying the equation |x-1|^(log^(2)x-1log^(2))=|x-1|^(3) is N, then find characteristic of logarithm of N to the base 5.

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)le10^(12) are alpha then

Number of integral values of x in the domain of function f(x)=sqrt(ln(|ln x|))+sqrt(7|x|-(|x|)^(2)-10) is equal to

Sum of Integral values of x 'satisfying sqrt((log_(2)x+log_(x)(16x)-5)(log_(2)x))+sqrt((log_(2)x+log_(x)(2x)-3)(log_(2)x))=1 is

Sum of all integral values of x satisfying the inequality (3((5)/(2))log(12-3x) is.....