Home
Class 11
MATHS
lim(x rarr1)(1-x^(3))/(2-sqrt(x^(2)+3))=...

`lim_(x rarr1)(1-x^(3))/(2-sqrt(x^(2)+3))=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x rarr1)(x-1)/(sqrt(x^(2)+3)-2)

lim_(x rarr1)(3sqrt(7+x^(3))-sqrt(3+x^(2)))/(x-1) is equal to

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(3^(x)-1)=

lim_(x rarr1)(sqrt(x^(2)+8)-sqrt(10-x^(2)))/(sqrt(x^(2)+3)-sqrt(5-x^(2)))=

lim_(x rarr0)(sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))lim2

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1-x+x^(2)))/(3^(x)-1)=

lim_(x rarr1)(1-x^(-(1)/(3)))/(1-x^(-(2)/(3)))

lim_(x rarr1)(x^(2)-sqrt(x))/(sqrt(x)-1)

lim_(x rarr1)(x^(2)-sqrt(x))/(sqrt(x-1))