Home
Class 12
MATHS
The value of a/((a-b)(x-a))+b/((b-a)(x-...

The value of `a/((a-b)(x-a))+b/((b-a)(x-b))` is

A

`x/((x-a)(x-b))`

B

`(x-a)/((x-b)(x-c))`

C

`(x - c)/((x - b)(a-x))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{a}{(a-b)(x-a)} + \frac{b}{(b-a)(x-b)} \), we can follow these steps: ### Step 1: Identify the common denominator The denominators of the two fractions are \( (a-b)(x-a) \) and \( (b-a)(x-b) \). Notice that \( (b-a) = -(a-b) \). Therefore, we can rewrite the second denominator as: \[ (b-a)(x-b) = -(a-b)(x-b) \] Thus, the common denominator for both fractions is: \[ (a-b)(x-a)(x-b) \] ### Step 2: Rewrite each fraction with the common denominator Now we can rewrite each fraction with the common denominator: \[ \frac{a}{(a-b)(x-a)} = \frac{a(x-b)}{(a-b)(x-a)(x-b)} \] \[ \frac{b}{(b-a)(x-b)} = \frac{-b(x-a)}{(a-b)(x-a)(x-b)} \] ### Step 3: Combine the fractions Now we can combine the two fractions: \[ \frac{a(x-b) - b(x-a)}{(a-b)(x-a)(x-b)} \] ### Step 4: Simplify the numerator Now let's simplify the numerator: \[ a(x-b) - b(x-a) = ax - ab - bx + ba = ax - bx = (a-b)x \] ### Step 5: Write the final expression Now we can substitute the simplified numerator back into the fraction: \[ \frac{(a-b)x}{(a-b)(x-a)(x-b)} \] ### Step 6: Cancel common factors Since \( (a-b) \) is common in both the numerator and denominator, we can cancel it (assuming \( a \neq b \)): \[ \frac{x}{(x-a)(x-b)} \] ### Final Answer Thus, the value of the expression is: \[ \frac{x}{(x-a)(x-b)} \]
Promotional Banner

Topper's Solved these Questions

  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|22 Videos
  • QUADRATIC EQUATIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|25 Videos
  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOORSTER FOR CRACKING EXAM |30 Videos

Similar Questions

Explore conceptually related problems

The value of (a-c)/((a-b)(x-a)) + (b-c)/((b-a)(x-b)) is:

If x=(4ab)/(a+b) , then the value of (x+2a)/(x-2a)+(x+2b)/(x-2b) is

The value of a(log_(b)(log_(b)x))/(log_(b)a) is

The value of (x^(a-b))^(c ) xx (x^(b-c))^(a) xx (x^(c-a))^(b) is

Find the value of (k)/(1-x^(a-b))+(k)/(1-x^(b-a))

Find the value of (1)/(1+x^(a-b))+(1)/(1+x^(b-a))

The minimum value of (x-a)(x-b) is

ARIHANT PUBLICATION BIHAR-RATIONAL EXPRESSIONS-EXAM BOOSTER (FOR CRACKING EXAM)
  1. If A = (x +1)/(x - 1) and B = (x - 2)/(x + 1), then A + B is

    Text Solution

    |

  2. If R=(a^(3)+1)/(a-1)andS=(a^(2)-a+1)/(a-1), then R div S is

    Text Solution

    |

  3. The expression to be added to (7x^(2) - x + 9) to produce (5x^(2) - 4)...

    Text Solution

    |

  4. (x^(2) - x - 2)/(x^(2) -3x +2) is lowest term is

    Text Solution

    |

  5. The simplified form of ((a+2))/((a+3))-((a-3))/((a+2)) is

    Text Solution

    |

  6. ((x-1)/(x^(2)-1)-(2)/(x)) expressed a rational expression is

    Text Solution

    |

  7. The product of additive inverse of (x+6)/(x+2) and (5x+2)/(5x-3) is:

    Text Solution

    |

  8. The rational expression which should be added to (2x^(3)+1)/(x^(2)+2) ...

    Text Solution

    |

  9. The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

    Text Solution

    |

  10. The expression ((x+1)(x-2)(x^(2)-9x+14))/((x-7)(x^(2)-4)) in the lowes...

    Text Solution

    |

  11. The value of a/((a-b)(x-a))+b/((b-a)(x-b)) is

    Text Solution

    |

  12. The sum of the rational expression (x - 3)/(x^(2) + 1) and its recipro...

    Text Solution

    |

  13. If A = 4x + (1)/(x), then the value of A + (1)/(A) is

    Text Solution

    |

  14. If x = (b)/(a - b) and y = (b)/(a + b) then the value of (1)/(x) + (1)...

    Text Solution

    |

  15. The value of a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b)) is:

    Text Solution

    |

  16. If A =((x-1)/(x+1)) and B =((x+1)/(x-1)), then the value of (A+B)^(2)...

    Text Solution

    |

  17. The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is...

    Text Solution

    |

  18. The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y...

    Text Solution

    |

  19. If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(...

    Text Solution

    |

  20. When x^(5)-5x^(4)+9x^(3)-6x^(2)-16x+13 is divided by x^(2)-3x+a , then...

    Text Solution

    |