Home
Class 12
MATHS
If A = 4x + (1)/(x), then the value of A...

If A = 4x + `(1)/(x)`, then the value of A + `(1)/(A)` is

A

`(x)/(4x^(2) + 1)`

B

`(4x^(2) + 1)/(x)`

C

`(1)/(4x^(3)+x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A + \frac{1}{A} \) given that \( A = 4x + \frac{1}{x} \). ### Step-by-Step Solution: 1. **Define the expression for A**: \[ A = 4x + \frac{1}{x} \] 2. **Find \( \frac{1}{A} \)**: To find \( \frac{1}{A} \), we first express \( A \) in a single fraction: \[ A = \frac{4x^2 + 1}{x} \] Therefore, \[ \frac{1}{A} = \frac{x}{4x^2 + 1} \] 3. **Add \( A \) and \( \frac{1}{A} \)**: Now we can add \( A \) and \( \frac{1}{A} \): \[ A + \frac{1}{A} = \left(4x + \frac{1}{x}\right) + \left(\frac{x}{4x^2 + 1}\right) \] To combine these, we need a common denominator: \[ A + \frac{1}{A} = \frac{(4x)(4x^2 + 1) + x}{x(4x^2 + 1)} \] 4. **Simplify the numerator**: Expanding the numerator: \[ (4x)(4x^2 + 1) + x = 16x^3 + 4x + x = 16x^3 + 5x \] So we have: \[ A + \frac{1}{A} = \frac{16x^3 + 5x}{x(4x^2 + 1)} \] 5. **Final simplification**: We can simplify the expression: \[ A + \frac{1}{A} = \frac{16x^3 + 5x}{4x^3 + x} \] ### Final Answer: Thus, the value of \( A + \frac{1}{A} \) is: \[ A + \frac{1}{A} = \frac{16x^3 + 5x}{4x^3 + x} \] ---
Promotional Banner

Topper's Solved these Questions

  • RATIONAL EXPRESSIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|22 Videos
  • QUADRATIC EQUATIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|25 Videos
  • RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOORSTER FOR CRACKING EXAM |30 Videos

Similar Questions

Explore conceptually related problems

if x-(1)/(x)=2, then the value of x^(4)+(1)/(x^(4)) is

If 2x+(1)/(4x)=1, then the value of x^(2)+(1)/(64x^(2)) is

If x^(4) + (1)/(x^(4)) = 23 , then the value of (x - (1)/(x))^(2) will be

ARIHANT PUBLICATION BIHAR-RATIONAL EXPRESSIONS-EXAM BOOSTER (FOR CRACKING EXAM)
  1. If A = (x +1)/(x - 1) and B = (x - 2)/(x + 1), then A + B is

    Text Solution

    |

  2. If R=(a^(3)+1)/(a-1)andS=(a^(2)-a+1)/(a-1), then R div S is

    Text Solution

    |

  3. The expression to be added to (7x^(2) - x + 9) to produce (5x^(2) - 4)...

    Text Solution

    |

  4. (x^(2) - x - 2)/(x^(2) -3x +2) is lowest term is

    Text Solution

    |

  5. The simplified form of ((a+2))/((a+3))-((a-3))/((a+2)) is

    Text Solution

    |

  6. ((x-1)/(x^(2)-1)-(2)/(x)) expressed a rational expression is

    Text Solution

    |

  7. The product of additive inverse of (x+6)/(x+2) and (5x+2)/(5x-3) is:

    Text Solution

    |

  8. The rational expression which should be added to (2x^(3)+1)/(x^(2)+2) ...

    Text Solution

    |

  9. The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

    Text Solution

    |

  10. The expression ((x+1)(x-2)(x^(2)-9x+14))/((x-7)(x^(2)-4)) in the lowes...

    Text Solution

    |

  11. The value of a/((a-b)(x-a))+b/((b-a)(x-b)) is

    Text Solution

    |

  12. The sum of the rational expression (x - 3)/(x^(2) + 1) and its recipro...

    Text Solution

    |

  13. If A = 4x + (1)/(x), then the value of A + (1)/(A) is

    Text Solution

    |

  14. If x = (b)/(a - b) and y = (b)/(a + b) then the value of (1)/(x) + (1)...

    Text Solution

    |

  15. The value of a/((a-b)(a-c)) + b/((b-c)(b-a)) + c/((c-a)(c-b)) is:

    Text Solution

    |

  16. If A =((x-1)/(x+1)) and B =((x+1)/(x-1)), then the value of (A+B)^(2)...

    Text Solution

    |

  17. The value of 1/((1-a)(1-b))+ a^(2)/((1-a)(b-a)) -b^(2)/((b-1)(a-b)) is...

    Text Solution

    |

  18. The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y...

    Text Solution

    |

  19. If alpha, beta and gamma are the roots of the cubic equation (x-1)(x^(...

    Text Solution

    |

  20. When x^(5)-5x^(4)+9x^(3)-6x^(2)-16x+13 is divided by x^(2)-3x+a , then...

    Text Solution

    |