Home
Class 12
MATHS
If log(a)m= x, then "log"(1//a) (1)/(m) ...

If `log_(a)m= x`, then `"log"_(1//a) (1)/(m)` is equal to

A

`x`

B

`-x`

C

`(1)/(x)`

D

`(-1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{1/a} \left( \frac{1}{m} \right) \) given that \( \log_a m = x \). ### Step-by-step Solution: 1. **Start with the given equation**: \[ \log_a m = x \] 2. **Use the change of base formula**: We know that: \[ \log_a m = \frac{\log m}{\log a} \] Therefore, we can rewrite the equation as: \[ \frac{\log m}{\log a} = x \] 3. **Express \( \log m \) in terms of \( \log a \)**: Rearranging the above equation gives: \[ \log m = x \cdot \log a \] 4. **Now, we need to find \( \log_{1/a} \left( \frac{1}{m} \right) \)**: Using the change of base formula again: \[ \log_{1/a} \left( \frac{1}{m} \right) = \frac{\log \left( \frac{1}{m} \right)}{\log \left( \frac{1}{a} \right)} \] 5. **Calculate \( \log \left( \frac{1}{m} \right) \)**: We can express this as: \[ \log \left( \frac{1}{m} \right) = \log 1 - \log m = 0 - \log m = -\log m \] 6. **Calculate \( \log \left( \frac{1}{a} \right) \)**: Similarly, we have: \[ \log \left( \frac{1}{a} \right) = \log 1 - \log a = 0 - \log a = -\log a \] 7. **Substituting back into the equation**: Now substituting these values into our expression: \[ \log_{1/a} \left( \frac{1}{m} \right) = \frac{-\log m}{-\log a} = \frac{\log m}{\log a} \] 8. **Using the earlier result**: From step 3, we know that \( \frac{\log m}{\log a} = x \). Therefore: \[ \log_{1/a} \left( \frac{1}{m} \right) = x \] ### Final Answer: \[ \log_{1/a} \left( \frac{1}{m} \right) = x \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION BIHAR|Exercise Exam Booster (For Cracking JEE)|20 Videos
  • LINEAR EQUATIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|30 Videos
  • MODEL SOLVED PAPER 2016

    ARIHANT PUBLICATION BIHAR|Exercise Questions|48 Videos

Similar Questions

Explore conceptually related problems

If log_(8)m + log_(6) (1)/(6) = (2)/(3), then m is equal to

If log_(8)m+log_(8).(1)/(6)=(2)/(3) , then m is equal to

(1 + log_(n)m) * log_(mn) x is equal to

ARIHANT PUBLICATION BIHAR-LOGARITHMS-Exam Booster (For Cracking JEE)
  1. log(5sqrt(5))5 is equal to

    Text Solution

    |

  2. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  3. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  4. If a= log(24) 12, b = log(36) 24, c = log(48) 36 , then 1 + abc is e...

    Text Solution

    |

  5. Evaluate: 81^(1//log(5)3) + 27^(log(9)36) + 3^(4//log(l)9)

    Text Solution

    |

  6. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  7. If log(8)m+ "log"(8) (1)/(6)= (2)/(3), then m is equal to

    Text Solution

    |

  8. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  9. If log x, log y and log z are in AP, then

    Text Solution

    |

  10. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  11. If log(a)m= x, then "log"(1//a) (1)/(m) is equal to

    Text Solution

    |

  12. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  13. The value of 7 "log"(a)(16)/(15)+5 "log"(a) (25)/(24) + 3"log"(a) (81)...

    Text Solution

    |

  14. Simplify: 1/(1+(log)a b c)+1/(1+(log)b c a)+1/(1+(log)c a b)

    Text Solution

    |

  15. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  16. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  17. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  18. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  19. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  20. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |