Home
Class 12
MATHS
The value of 7 "log"(a)(16)/(15)+5 "log"...

The value of `7 "log"_(a)(16)/(15)+5 "log"_(a) (25)/(24) + 3"log"_(a) (81)/(80)` is

A

`log_(a)5`

B

`log_(a) 3`

C

`log_(a) 2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 7 \log_a \left(\frac{16}{15}\right) + 5 \log_a \left(\frac{25}{24}\right) + 3 \log_a \left(\frac{81}{80}\right) \), we will use the properties of logarithms step by step. ### Step 1: Apply the logarithmic property Using the property \( \log \left(\frac{m}{n}\right) = \log m - \log n \), we can rewrite each term: \[ 7 \log_a \left(\frac{16}{15}\right) = 7 \left(\log_a 16 - \log_a 15\right) \] \[ 5 \log_a \left(\frac{25}{24}\right) = 5 \left(\log_a 25 - \log_a 24\right) \] \[ 3 \log_a \left(\frac{81}{80}\right) = 3 \left(\log_a 81 - \log_a 80\right) \] ### Step 2: Expand the expression Now, we can expand the entire expression: \[ = 7 \log_a 16 - 7 \log_a 15 + 5 \log_a 25 - 5 \log_a 24 + 3 \log_a 81 - 3 \log_a 80 \] ### Step 3: Rewrite the numbers in terms of their prime factors Next, we rewrite the numbers \( 16, 15, 25, 24, 81, \) and \( 80 \) in terms of their prime factors: - \( 16 = 2^4 \) - \( 15 = 3 \times 5 \) - \( 25 = 5^2 \) - \( 24 = 2^3 \times 3 \) - \( 81 = 3^4 \) - \( 80 = 2^4 \times 5 \) ### Step 4: Substitute the prime factorization into the expression Now substituting these back into the expression: \[ = 7 \log_a (2^4) - 7 \log_a (3 \times 5) + 5 \log_a (5^2) - 5 \log_a (2^3 \times 3) + 3 \log_a (3^4) - 3 \log_a (2^4 \times 5) \] ### Step 5: Use the power and product properties of logarithms Using the properties \( \log_a (m^n) = n \log_a m \) and \( \log_a (mn) = \log_a m + \log_a n \): \[ = 7 \cdot 4 \log_a 2 - 7 (\log_a 3 + \log_a 5) + 5 \cdot 2 \log_a 5 - 5 (\log_a (2^3) + \log_a 3) + 3 \cdot 4 \log_a 3 - 3 (\log_a (2^4) + \log_a 5) \] This simplifies to: \[ = 28 \log_a 2 - 7 \log_a 3 - 7 \log_a 5 + 10 \log_a 5 - 15 \log_a 2 - 5 \log_a 3 + 12 \log_a 3 - 12 \log_a 2 - 3 \log_a 5 \] ### Step 6: Combine like terms Now, we combine the coefficients of \( \log_a 2, \log_a 3, \) and \( \log_a 5 \): - Coefficient of \( \log_a 2 \): \[ 28 - 15 - 12 = 1 \] - Coefficient of \( \log_a 3 \): \[ -7 - 5 + 12 = 0 \] - Coefficient of \( \log_a 5 \): \[ -7 + 10 - 3 = 0 \] ### Final Result Thus, we have: \[ = 1 \log_a 2 + 0 \log_a 3 + 0 \log_a 5 = \log_a 2 \] The value of the expression is \( \log_a 2 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    ARIHANT PUBLICATION BIHAR|Exercise Exam Booster (For Cracking JEE)|20 Videos
  • LINEAR EQUATIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|30 Videos
  • MODEL SOLVED PAPER 2016

    ARIHANT PUBLICATION BIHAR|Exercise Questions|48 Videos

Similar Questions

Explore conceptually related problems

The value of 7 log_(a) ""(16)/(15) + 5log_(a) ""(25)/(24) + 3 log_(a) ""(81)/(80) is

If 7"log"_(a)(16)/(15)+5"log"_(a)(25)/(24)+3"log"_(a)(81)/(80)=8 , then a=

Find the value of "log"_(27)(1)/(81)

Givenlog (2)=0.3010 and log_(10)(3)=0.4771 find the value of 7log_(10)((10)/(9))-2log_(10)((25)/(24))+3log_(10)((81)/(80))

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

ARIHANT PUBLICATION BIHAR-LOGARITHMS-Exam Booster (For Cracking JEE)
  1. log(5sqrt(5))5 is equal to

    Text Solution

    |

  2. The value of log(6) (216sqrt(6)) is

    Text Solution

    |

  3. the value of (0.05)^(log(sqrt(20))(0.1+0.01+0.001+....)

    Text Solution

    |

  4. If a= log(24) 12, b = log(36) 24, c = log(48) 36 , then 1 + abc is e...

    Text Solution

    |

  5. Evaluate: 81^(1//log(5)3) + 27^(log(9)36) + 3^(4//log(l)9)

    Text Solution

    |

  6. (log(8)17)/(log(9)23) - (log(2sqrt(2))17)/(log(3)23) is equal to

    Text Solution

    |

  7. If log(8)m+ "log"(8) (1)/(6)= (2)/(3), then m is equal to

    Text Solution

    |

  8. If log(2)x xx log(2)"" (x)/(16) + 4 = 0, then x is equal to

    Text Solution

    |

  9. If log x, log y and log z are in AP, then

    Text Solution

    |

  10. The value of (1)/(log(3)pi) + (1)/(log(4)pi) is

    Text Solution

    |

  11. If log(a)m= x, then "log"(1//a) (1)/(m) is equal to

    Text Solution

    |

  12. If f(a) = log"" (1 + a)/(1-a) then f((2a)/(1+a^(2))) is equal to

    Text Solution

    |

  13. The value of 7 "log"(a)(16)/(15)+5 "log"(a) (25)/(24) + 3"log"(a) (81)...

    Text Solution

    |

  14. Simplify: 1/(1+(log)a b c)+1/(1+(log)b c a)+1/(1+(log)c a b)

    Text Solution

    |

  15. If log ((a + b)/(2)) = (1)/(2) (log a + log b), then a is equal to

    Text Solution

    |

  16. (1 + log(n)m) * log(mn) x is equal to

    Text Solution

    |

  17. log(a)b = log(b)c = log(c)a, then a, b and c are such that

    Text Solution

    |

  18. If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

    Text Solution

    |

  19. If (log)(10)2=0. 30103 ,(log)(10)3=0. 47712 , then find the number of ...

    Text Solution

    |

  20. (log (x^(3) + 3x^(2) + 3x + 1))/(log (x^(2) + 2x + 1)) is equal to

    Text Solution

    |