Home
Class 12
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the equation `x^3+4x+1=0`, then
`(alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)` is equal to :

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation 2x^(3)-5x^(2)+3x-1=0, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha) is

If alpha,beta,gamma are the roots of he euation x^(3)+4x+1=0 ,then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha,beta,gamma are the roots of equation 3^(3)-2x^(2)+3x-5=0, then the value of (alpha-1)^(-1)+(beta-1)^(-1)+(gamma-1)^(-1) is equal to

if alpha,beta,gamma are the roots of equation x^(3)-x-1=0, then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma)