Home
Class 12
MATHS
int((tan^(-1)x)^(3))/(1+x^(2))dx is equa...

`int((tan^(-1)x)^(3))/(1+x^(2))dx` is equal to

A

`3(tan^(-1)x)^2+c`

B

`(tan^(-1)x)^4/4+c`

C

`(tan^(-1)x)^4+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x tan^(-1)x^(2))/(1+x^(4))dx

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int(((x^(2)+2)a^((x+tan^(-1)x)))/(x^(2)+1))dx is equal to

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int ((x^(2)+2)(a^((x+tan^(-1)x)))/(x^(2)+1)) dx is equal to

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

(3)int(tan^(-1)x)dx/((1+x^(2))

int x(e^(tan^(-1)x^(2)))/(x^(4)+1)dx equals