Home
Class 12
MATHS
For the function f(x) = f(x)={((e^(1//...

For the function
`f(x) = f(x)={((e^(1//x)-1)//(e^(1//x)+1),xne0),(0,x=0):} x=0, which of the following is correct :

A

`lim_(x rarr 0)` f(x) does not exists

B

`lim_(x rarr 0)` f(x)=1

C

`lim_(x rarr 0)` f(x) exists but f(x) is not continuous at x = 0

D

f(x) is continuous at x = 0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

For the function f(x) = (e^(1/x) -1)/(e^(1//x) + 1) , x=0 , which of the following is correct .

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is