Home
Class 12
MATHS
If |(x,x^2,1+x^3),(y,y^2,1+y^2),(z,z^2,1...

If `|(x,x^2,1+x^3),(y,y^2,1+y^2),(z,z^2,1+z^3):|=0` and x,y,z are all distinct, then xyz is equal to

A

-1

B

1

C

0

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

If |(x,x^(2),1+x^(2)),(y,y^(2),1+y^(2)),(z,z^(2),1+z^(2))| where x, y, z are distinct what is |A| ?

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

[[x,x^2, 1+x^2],[y, y^2, 1+y^2],[z, z^2, 1+z^2]] where x,y,z are distinct. What is |A|.

If xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0, then xyz =

If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0 , show that : (i) 1+xyz=0 (ii) xyz=-1

If x,y,z are distinct and |(x, x(x^2+1), x+1),(y,y(y^2+1), y+1),(z, z(z^2+1), z+1)|=0 then (A) xyz=0 (B) x+y+z=0 (C) xy+yz+zx=0 (D) x^2+y^2+z^2=1

If x,y,z are different and Delta=det[[x,x^(2),x^(3)-1y,y^(2),y^(3)-1z,z^(2),z^(3)-1]]=0, then using properties of determinants,show that xyz=1