Home
Class 12
MATHS
The lines (x-a+d)/(a-delta)=(y-a)/alpha=...

The lines `(x-a+d)/(a-delta)=(y-a)/alpha=(z-a-d)/(a+delta)` and `(x-b+c)/beta-r=y-b/beta=z-b-c/beta+r` are coplanar and then equation to the plane in which they lie is

A

x+y+z=0

B

x-y+z=0

C

x-2y+z=0

D

x+y-2z=0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines (x-a+d)/(alpha-delta)=(y-a)/(alpha)=(z-a-d)/(alpha+delta)(x-b+c)/(beta-gamma)=(y-b)/(beta)=(z-b-c)/(beta+gamma) are coplanar.

Line (x-2)/alpha=(y-2)/(-3)=(z+2)/2 lies in x+3y-2z+beta=0 then alpha+beta= ?

Let the line (x-2)/(3)=(y-1)/(-5)=(z+2)/(2) lie in the plane x+3y-alpha z+ beta=0 then the value of alpha+beta=

The solution of the system of equations a_(1)x+b_(1)y+c_(1)z=d_(1),a_(2)x+b_(2)y+c_(2)z=d_(2) and a_(3)x+b_(3)y+c_(3)z=d_(3) using Crammer's rule is x=(Delta_(1))/(Delta),y=(Delta_(2))/(Delta) and z=(Delta_(3))/(Delta) where Delta!=0 The solution of the system 2x+y+z=1 , x-2y-z=(3)/(2) , 3y-5z=9 is

If the line (x-2)/3 =(y-1)/-5 =(z+2)/2 lies in the plane x+3y - alphaz + beta=0 , then: (alpha, beta)-=

If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-delta), z=sin(gamma-alpha)*sin(beta-delta) , then :