Home
Class 12
MATHS
tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2c...

`tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]` is equal to

A

2a/b

B

2b/a

C

a/b

D

b/a

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan[pi/4+1/2cos^(-1)""a/b]+tan[pi/4-1/2cos^(-1)""a/b]=2b/a

The expression tan.(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x) equals

Prove that tan(pi/4 +1/2 cos^(-1) (a/b)) + tan^(-1) (pi/4 -1/2 cos^(-1) (a/b)) =2b/a

Prove the following: tan[(pi)/(4)+(1)/(2)cos^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/(2)cos^(-1)((a)/(b))]=(2b)/(a)

tan((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x),x!=0 is equal to

tan((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x),x!=0 is equal to x( b) 2x( c) (2)/(x) (d) none of these

tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) is :

If x != 0 , then tan((pi)/4 + 1/2 cos^(-1) x) + tan ((pi)/4 - 1/2 cos^(-1) x) = ......