Home
Class 12
PHYSICS
A particle moving along x-axis has accel...

A particle moving along x-axis has acceleration f, at time t, given by `f=f_0(1-t/T)`, where `f_0` and T are constants. The particle at t=0 has zero velocity. In the time interval between t=0 and the instant when f=0, the particle's velocity `(v_x)` is

A

`f_0T`

B

`1/2f_0T^2`

C

`f_0T^2`

D

`1/2f_0T`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

A particle is moving along x-axis with acceleration a=a_(0)(1-t//T) where a_(0) and T are constants. The particle at t=0 has zero velocity. Calculate the average velocity between t=0 and the instant when a=0

A particle moves along x-axis with acceleration a = a0 (1 – t// T) where a_(0) and T are constants if velocity at t = 0 is zero then find the average velocity from t = 0 to the time when a = 0.

The instantaneous velocity of a particle moving in a straight line is given as a function of time by: v=v_0 (1-((t)/(t_0))^(n)) where t_0 is a constant and n is a positive integer . The average velocity of the particle between t=0 and t=t_0 is (3v_0)/(4 ) .Then , the value of n is

A particle moves along x-axis and its acceleration at any time t is a = 2 sin ( pit ), where t is in seconds and a is in m/ s^2 . The initial velocity of particle (at time t = 0) is u = 0. Q. Then the distance travelled (in meters) by the particle from time t = 0 to t = t will be :

A particle moves along x-axis and its acceleration at any time t is a = 2 sin ( pit ), where t is in seconds and a is in m/ s^2 . The initial velocity of particle (at time t = 0) is u = 0. Q. Then the distance travelled (in meters) by the particle from time t = 0 to t = 1 s will be :

A particle of mass M originally at rest is subjected to a force whose direction is constant but magnitude varies with time according to the relation F=F_(0)[1-((t-T)/(T))^(2)] Where F_(0) and T are constants. The force acts only for the time interval 2T. The velocity v of the particle after time 2T is :