Home
Class 14
REASONING
1, 1000, 11011, 1000000, 1111101, ?...

1, 1000, 11011, 1000000, 1111101, ?

A

1100101

B

11011000

C

10000000

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

The given sequence of number is in Binary system and follows the pattern
Cubes ofnatural numbers ie. `1^(3), 2^(3), 3^(3), 4^(3), 5^(3)," and "ul(6)^(ul(3))` Converting this binary system into Decimal system,
We get `1 implies 1xx2^(@)implies1=1^(3)`
`1000implies1xx2^(3)+0+2^(2)+0xx2^(1)+0xx2^(@)`
`implies8+0+0+0=8=2^(3)`
`implies1xx2^(4)+1xx2^(3)+0xx2^(2)+1xx2^(1)+1xx2`
`16+8+2+1=3^(3)`
`1000000 implies1 xx 2^(6) + 0 xx 2^(5) + 0 xx 2^(4) + 0 xx 2^(3)+ 0xx2^(2)+0xx2^(1)+0xx2^(@)`
`implies64+0+0+0+0+0+0=64=4^(3)`.
`1111101 implies 1 xx 2^(6) + 1 xx 2^(5) + 1 xx 2^(2) + 1 xx 2^(3) + 1 xx 2^(2) + 0 xx 2^(1) + 1 xx 2^(@)`
`implies 64 + 32 + 16 + 8 + 4 + 0 + 1 = 125 = 53`.
`ul(11011000)implies 1 xx 2^(7) + 1 xx 2^(6) + 0 xx 2^(5) + 1 xx 2^(4) + 1 xx 2^(3) + 0 xx 2^(2)+ 0 xx 2^(1) + 0 xx 2^(0)`
`implies 128 + 64 + 0 + 16 + 8 + 0 + 0 + 0`
`= ul(216)=ul(6)^(ul(3))`.
Therefore, Missing number `=6^(3)=216 =11011000.`
Promotional Banner

Topper's Solved these Questions

  • SERIES COMPLETION : NUMBER

    LUCENT PUBLICATION|Exercise EXERCISE-2 (Type-I: Difference Series) |2 Videos
  • SERIES COMPLETION : NUMBER

    LUCENT PUBLICATION|Exercise EXERCISE-2 (Type-II: Squares/Cubes Series)|12 Videos
  • SERIES COMPLETION : NUMBER

    LUCENT PUBLICATION|Exercise EXERCISE-1 (type-V : Triangular Pattern Series )|3 Videos
  • SERIES COMPLETION : MIXED SERIES

    LUCENT PUBLICATION|Exercise Exercise ( Type-V: Miscellaneous )|1 Videos
  • SITUATION REACTION TEST

    LUCENT PUBLICATION|Exercise EXERCISE (DECISION MAKING )|5 Videos

Similar Questions

Explore conceptually related problems

The nth term of the sequence (1)/(100), (1)/(10000), (1)/(1000000) , ... is __________.

The average of 1000.0001,100.001,10.01,1.1 is:

Which is larger, (1.01)^(1000000) or 10000 ?