Home
Class 14
REASONING
100,1001,110001, 1100001,1111001, ?, 100...

100,1001,110001, 1100001,1111001, ?, 100100001

A

10010011

B

10101001

C

11011011

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

The given sequence of number is in Binary system and follows the pattern Squares of the consecutive prime numbers
i.e. `2^(2), 3^(2), 5^(2), 7^(2), 11^(2), 13^(2)," and " 17^(2)`.
Converting this Binarysystem into Decimalsystem, we get
`100implies1xx2^2+0xx2^1+0xx2^0`
`implies4+0+0=4=2^(2)`
`1001implies1xx2^3+0xx2^2+0xx2^1+1xx2^0`
`8+0+0+1=9=3^(2)`.
`11001implies1xx2^4+1xx2^3+0xx2^2+0xx2^1+1xx2^0`.
`16+8+0+0+1=25=5^(2)`
`110001implies1xx2^5+1xx2^4+0xx2^3+0xx2^2+0^1xx2^(2)`.
`implies32+16+0+0+0+1=49=7^(2)`
`1111001implies1xx2^6+1xx2^5+1xx2^4+1xx2^3+0xx2^2+0xx2^1+1+2^0`
`64+32+16+8+0+0+1=21=11^(2)`
`10101001implies1xx2^7+0xx2^6+1xx2^5+0xx2^4+1xx2^3+0xx2^2+0+2^1+1xx2^0`
`implies128+0+32+0+8+0+0+1=169=13^(2)`
`100100001implies1xx2^8+0xx2^7+0xx2^6+1xx2^5+0xx2^4+0xx2^3+0+2^2+0xx2^1+1xx2^0`
`implies256+0+0+32+0+0+0+1=289=17^(2)`.
Promotional Banner

Topper's Solved these Questions

  • SERIES COMPLETION : NUMBER

    LUCENT PUBLICATION|Exercise EXERCISE-2 (Type-I: Difference Series) |2 Videos
  • SERIES COMPLETION : NUMBER

    LUCENT PUBLICATION|Exercise EXERCISE-2 (Type-II: Squares/Cubes Series)|12 Videos
  • SERIES COMPLETION : NUMBER

    LUCENT PUBLICATION|Exercise EXERCISE-1 (type-V : Triangular Pattern Series )|3 Videos
  • SERIES COMPLETION : MIXED SERIES

    LUCENT PUBLICATION|Exercise Exercise ( Type-V: Miscellaneous )|1 Videos
  • SITUATION REACTION TEST

    LUCENT PUBLICATION|Exercise EXERCISE (DECISION MAKING )|5 Videos

Similar Questions

Explore conceptually related problems

The remainder when the determinant [[999^(999),1000^(1000),1001^(1001)1002^(1002),1003^(1003),1004^(1004)1005^(1005),1006^(1006),1007^(1007)]| is divided by 5 is

Choose the correct alternative so that a series can be established . 11, 10, (….), 100, 1001, 1000, 10001

1001-:11 of 13= ?

The variance of the data 1001,1003,1006,1007,1009,1010 is

Write the number of significant digits in a 1001, b. 100.1, c.100.10 d. 0.001001.

A=[[1,00,1]]

1001 xx 2002 = 1001 xx (1001+ _____ )