Home
Class 10
MATHS
If cos theta + cos^2 theta = 1, then val...

If `cos theta + cos^2 theta` = 1, then value of `sin^2 theta + sin^4 theta` is
(a) -1
(c) 0
(c) 1
(d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta + sin^2 theta =1 , then the value of cos^2 theta + cos^ 4 theta is

If sin theta + sin^(2) theta = 1 , then prove that cos^(2) theta + cos^(4)theta = 1.

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

If sin theta- cos theta=0 then show that sin^4 theta+cos^4 theta=1/2

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

If sin^(8)theta+cos^(8)theta-1=0 then what is the value of cos^(2)theta sin^(2)theta

The greatest value of sin^(4)theta+cos^(4)theta is (1)/(2)(b)1 (c) 2(d)3

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

2(cos theta+cos2 theta)+(1+2cos theta)sin2 theta=2sin theta