Home
Class 11
MATHS
Prove that : sec^(2)theta - cos^(2) th...

Prove that :
`sec^(2)theta - cos^(2) theta = sin^(2)theta(sec^(2)theta + 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Prove that : tan^(4)theta + tan^(2)theta = sec^(4)theta - sec^(2) theta

Prove : cot^(2) theta-tan^(2)theta=cosec^(2)theta-sec^(2)theta

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove that sin^4 theta - cos^4 theta = 1 - 2cos^2 theta

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)

Prove the following : cot^2 theta - tan^2 theta = cosec^2 theta -sec^2 theta

Prove that : (sin^(2) theta)/(cos theta ) + cos theta = sec theta

If cos theta + sec theta =2 , then sec^(2)theta - sin^(2)theta=