Home
Class 11
MATHS
Prove that : cos^(4)theta - cos^(2)th...

Prove that :
`cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sec^(2)theta - cos^(2) theta = sin^(2)theta(sec^(2)theta + 1)

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)

Prove each of the following identities : '(i) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (ii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta

Prove that sin^4 theta - cos^4 theta = 1 - 2cos^2 theta

sin4theta can be written as................... A) 4 sin theta (1-2 sin ^(2) theta ) sqrt(1- sin ^(2) theta ) B) 2 sin theta cos theta sin ^(2) theta C) 4 sin theta - 6 sin ^(3) theta D) 4 sin theta + 6 sin ^(2) theta

Find dy/dx if : x= 3 cos theta - 2 cos^3 theta , y= 3 sin theta - 2 sin^3 theta

Prove that : (sin^(2) theta)/(cos theta ) + cos theta = sec theta

Prove that : (1-sin theta cos theta)/ (cos theta (sec theta - cosec theta)) times (sin^2 theta - cos^2 theta)/(sin^3 theta + cos^3 theta) = sin theta