Home
Class 11
MATHS
If A=[[0,1+2i,i-2],[-1-2i,0,-7],[2-I,7,0...

If `A=[[0,1+2i,i-2],[-1-2i,0,-7],[2-I,7,0]]`,where `i=sqrt-1`,prove that`A^T=-A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [[3,1],[-1,2]] ,find A^2-5A+7I

If A=[[i,2i],[-3,2]] and B=[[2i,i],[2,-3]] ,where sqrt-1=(i) find A+B and A-B .Show that A+B is a singular.A-B a singular? Justify your answer.

If A=[[1,2,0],[5,4,2],[0,7,-3]] find the product (A+I)(A-I)

If A+I=[[1,2,0],[5,4,2],[0,7,-3]] find the product (A+I)(A-I)

If A=[[1,-2],[5,6]],B=[[3,-1],[3,7]] ,Find AB-2I ,where I is unit martrix of order 2.

For each of the following matrices,using its transpose state whether it is a symmetric,a skew-symmetric or neither. [[0,1+2i,i-2],[-1-2i,0,-7],[2-i,7,0]]

If A = [[1,-1,2],[3,0,-2],[1,0,3]] verify that A(adjA) = (adjA)A = abs(A)I ,

(1+i)^10 , where i^2=-1 , is equal to

If A=[[3,1],[-1,2]] prove that A^2-5A+7I=O ,where I is unit matrix of order 2.

If A = [[3,1],[-1,2]] then show that: A^2-5A+7I = 0 .