Home
Class 11
MATHS
Prove that ((2n)!) / (n!) = 2^n(2n - 1) ...

Prove that `((2n)!) / (n!) = 2^n(2n - 1) (2n - 3)` ... 5.3.1.

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: ((2n + 6)!) / ((n + 3) (n + 2) (2n + 3)!)

Simplify. ((n + 3)!) / ((n^2 - 4) (n +1)!)

1 + i^(2n) + i^(4n) + i^(6n)

Simplify. (n + 2) / (n!) - (3n + 1) / ((n + 1)!)

Prove 1 + 5 + 9 + ... + (4n - 3) = n(2n - 1), AA n in N

Prove that 1 + w ^( n ) + w ^( 2n) = 3, if n is multiple of 3 1 + w ^( n ) + w ^( 2n) = 0, if n is not multiple of 3 n in N

Find n if. (((2n) !) / (7 !(2n - 7) !)) / ((n !) / (4 !(n - 4) !)) = 24 / 1

If (1-i)^n = 2^n , then n=

By method of induction prove that 1.3 + 2.5 + 3.7 +...+ n (2n + 1) = n/6 (n + 1) (4n + 5) for all n in N