Text Solution
Verified by Experts
The correct Answer is:
Similar Questions
Explore conceptually related problems
Recommended Questions
- Simplify. 1 / (n!) - 3 / ((n + 1)!) - (n^2 -4) / ((n + 2)!)
Text Solution
|
- 1.2.3+2.3.4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)
Text Solution
|
- Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)
Text Solution
|
- Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)
Text Solution
|
- 1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N
Text Solution
|
- Simplify: (3^(n+1))/(3^(n(n-1)))-:(9^(n+1))/((3^(n+1))^((n-1)))
Text Solution
|
- 1.2.3+2.3.4+…….+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)
Text Solution
|
- 1.2.3+2.3.4+3.4.5+……..+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4
Text Solution
|
- |{:(n!,(n+1)!,(n+2)!),((n+1)!,(n+2)!,(n+3)!),((n+2)!,(n+3)!,(n+4)!):}|...
Text Solution
|