Home
Class 11
MATHS
Find the value of: (i) (sqrt 3 + 1)^4 - ...

Find the value of: (i) `(sqrt 3 + 1)^4 - (sqrt 3 - 1)^4` (ii) `(2 + sqrt 5)^5 + (2 - sqrt 5)^5`

Text Solution

Verified by Experts

The correct Answer is:
(i) `32sqrt(3)` , (ii) 1364
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (sqrt 3 + 2)^4 - (sqrt 3 - 2)^4

Expand (sqrt 2 + 1)^5 - (sqrt 2 - 1)^5

Expand: (i) (sqrt 3 + sqrt 2)^4 (ii) (sqrt 5 - sqrt 2)^5

Find the value of: 2 x^4 +5 x^3 +7 x^2 -x-41, if x=-2- sqrt 3 i

Expand (sqrt 5 - sqrt 3)^4

Express the follwing in the form of a + ib, a , b in R i=sqrt ( -1). State the value of a and b. ( - sqrt5 + 2 sqrt ( -4) ) + (1 - sqrt ( -9 ))+ (2 + 3i ) (2 - 3i )

Find the value of x ^(4) + 9 x ^(3) + 35 x ^(2) - x + 4, if x =- 5 + sqrt ( -4).

Express the following expression in the form (a+ib), frac{(3+i sqrt 5)(3-i sqrt 5)}{(sqrt 3 + sqrt 2 i) - (sqrt 3 - sqrt 2 i)}

If z = ((sqrt 3)/2 + i/2)^5 + ((sqrt 3)/2 - i/2)^5 , then