Home
Class 11
MATHS
C(1) + C(2) + C(3) + …… C(6) = 63...

`C_(1) + C_(2) + C_(3) + …… C_(6) = 63`

Promotional Banner

Similar Questions

Explore conceptually related problems

C_(1) + C_(2) + C_(3) + ……….. C_(7) = 127

C_(1) + C_(2) + C_(3) + ….. C_(n) = 2^(n)-1

C_(0) + C_(1) + C_(2) + ……+ C_(9) = 512

C_(0) + C_(1) + C_(2) +….. C_(8) = 256

C_(0) + C_(2) + C_(4) + C_(6) +C_(8) = C_(1) + C_(3) + C_(5) + C_(7) = 128

Show that: C_(0) + C_(2) + C_(4) +…… + C_(12) = C_(1) + C_(2) + C_(3) + C_(5) + ……. + C_(11) = 2048

Prove that: C_(1) + 2C_(2) + 3C_(3) + 4C_(4) +….. + nC_(n) = n.2^(n-1)

Show that C_(0) + C_(1) + C_(2) + …. + C_(10) = 1024

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

Show that : C_1 + C_2 + C_3 + …. + C_7 = 127