Home
Class 14
MATHS
If 3(1)/2 xx 3(1)/2 =1(1)/3 xx then the...

If `3(1)/2 xx 3(1)/2 =1(1)/3 xx` _____ then the number in blank space is

A

`147/16`

B

`148/17`

C

`145/16`

D

`145/17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3\frac{1}{2} \times 3\frac{1}{2} = 1\frac{1}{3} \times \_\_\_\_ \), we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers into improper fractions. - For \( 3\frac{1}{2} \): \[ 3\frac{1}{2} = \frac{3 \times 2 + 1}{2} = \frac{6 + 1}{2} = \frac{7}{2} \] - For \( 1\frac{1}{3} \): \[ 1\frac{1}{3} = \frac{1 \times 3 + 1}{3} = \frac{3 + 1}{3} = \frac{4}{3} \] ### Step 2: Substitute the Improper Fractions into the Equation Now we substitute these values back into the equation: \[ \frac{7}{2} \times \frac{7}{2} = \frac{4}{3} \times A \] ### Step 3: Calculate the Left Side Next, we calculate the left side: \[ \frac{7}{2} \times \frac{7}{2} = \frac{49}{4} \] ### Step 4: Set Up the Equation Now we have: \[ \frac{49}{4} = \frac{4}{3} \times A \] ### Step 5: Solve for A To find \( A \), we can multiply both sides by the reciprocal of \( \frac{4}{3} \): \[ A = \frac{49}{4} \times \frac{3}{4} \] \[ A = \frac{49 \times 3}{4 \times 4} = \frac{147}{16} \] ### Conclusion Thus, the number in the blank space is \( \frac{147}{16} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1.123 xx 3.211 = 3.122+ '_____' then the number in blank space is

(2 1/3xx3 1/2)=

(2^2 xx 3^2 )/(2^(-2)) xx 3^(-1)

Simplify: (1/2 xx 2/3)/(1/2 xx 2/3+3/8 xx 1/3)

If 1(2)/(3)+ ( 2)/( 7 ) xx ( x)/( 7) = 1( 1)/( 4) xx ( 2)/( 3) +( 1)/( 6) then find the value of x.

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

2/5 xx (-3)/7 - 1/6 xx 3/2 + 1/14 xx 2/5

2/3xx1/3-1/3xx5/2=

(2)/(3)times(1)/(2)+(1)/(2)-(2)/(3)

Simplify 2 1/2 xx 4 3/6 xx 1