Home
Class 14
MATHS
A sequence , a , ax , ax^(2), "……" ax^(...

A sequence , a , ax , `ax^(2), "……" ax^(n)` , has odd number of terms . Find its median .
(a) `ax^(n-1)` (b) `ax^((n//2) - 1)` (c) `ax^(n//2)` (d) `ax^((n//2) + 1)`

A

`ax^(n/2+1)`

B

`ax^(n/2-1)`

C

`ax^(n-1)`

D

`ax^(n/2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(ax^(2) + bx + c)^(n)

The number of terms in the expansion of (ax+by+cz)^(n) is

(ax)^(m)+(b)^(n)

lim_(x rarr a)x^(n) + ax^(n-1) +a^(2)x^(n-2) + .........+a^(n)= ________.

If one root is nth power of the other root of this equation x^(2)-ax+b=0 then, b^(n/(n+1))+b^(1/(n+1)) = (A) a (B) a^(n) (C) b^(n) (D) ab

The sum of the coefficient in the expansion of (1+ax-2x^(2))^(n) is

If the 4 th term in the expansion of (ax+1/x)^(n) is 5/2, then a=(1)/(2) b.n=8 c.a=(2)/(3) d.n=6