Home
Class 7
MATHS
(iii) ((sqrt(2))/(5))^(8)-:((sqrt(2))/(5...

(iii) `((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^(1/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

8. (sqrt(5)-2)^(2)=?-sqrt(80)

The shortest distance between the line yx=1 and the curve x=y^(2) is (A)(3sqrt(2))/(8) (B) (2sqrt(3))/(8) (C) (3sqrt(2))/(5) (D) (sqrt(3))/(4)

(3)/(sqrt(8)-sqrt(2)+sqrt(5))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) (ii) (5+2sqrt(3))/(7+4sqrt(3)) (iii) (1+sqrt(2))/(3-2sqrt(2)) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6)) (v) (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18)) (vi) (2sqrt(3)-sqrt(5))/(2sqrt(3)+3sqrt(3))

Simplify each of the following : (3)/(5-sqrt(3))+(2)/(5+sqrt(3)) (ii) (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5))(sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+2)/(sqrt(5)-2)

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

The following are the steps involved in finding the value of x-y from (sqrt(8)-sqrt(5))/(sqrt(8)+sqrt(5))=x-ysqrt(40) . Arrange them in sequential order. (A) (13-2sqrt(40))/(8-5)=x-ysqrt(40) (B) ((sqrt(8))^(2)+(sqrt(5))^(2)-2(sqrt(8))(sqrt(5)))/((sqrt(8))^(2)-(sqrt(5))^(2))=x-ysqrt(40) (C) x-y=(11)/(3) (D) x=(13)/(3) and y=(2)/(3) (E) ((sqrt(8)-sqrt(5))(sqrt(8)-sqrt(5)))/((sqrt(8)+sqrt(5))(sqrt(8)-sqrt(5)))=x-ysqrt(40)

Simplify each of the following by rationalising the denominator,(1)/(5+sqrt(2)) (ii) (5+sqrt(6))/(5-sqrt(6)) (iii) (7+3sqrt(5))/(7-3sqrt(5)) (iv) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))