Home
Class 12
MATHS
If f(x)={[kx^(2),x<=2];[3,x>2] is contin...

If `f(x)={[kx^(2),x<=2];[3,x>2]` is continuous then value of k is :
(a) (2)/(3)   (b) (4)/(3)
(c) (3)/(2)   (d) 3/4

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = [kx+1,x 5] is continuous then value of k is : (a) (9)/(5) (b) (5)/(9) (c) (5)/(3) (d) (3)/(5)

(v) If f(x)={ kx^(2) x>=1 4 x<1 is continuous at x=1 then the value of k is:

If one of the zeroes of the quadratic polynomial (k-1)x^(2)+kx+1 is -3 then the value of k is : (A) (4)/(3) (B) (-4)/(3) (C) (2)/(3) (D) (-2)/(3)

Find the value of the following : (a)   5^3   (b)   (-7)^3   ( c )  ( 1/3 )^-4

Find the value of   ( 2/3 )/( 5/4 )

Find the value of the following : (a)   2^-2   ( b )   ( -3 )^(-4 )

If log_(8)x=(2)/(3), then the value of x is a.(3)/(4)b .(4)/(3)c.3d.4

If ((1+iota)^(2))/(2-iota)=x+iotay , then value of x+y will be a) 2/5   b)  -4/5 c)  -2/5 d) 4/5

Find the value of ( 1+ 1/iota )^4 is : ( a )   0   ( b )  -4   ( c )   4   ( d )   3

If f(x)={(log_(1-3x)(1+3x), x!=0),(=k ,x=0)) is continuous at x=0, then value of k equals (A) -1 (B) 1 (C) 2 (D) -2