Home
Class 11
MATHS
Prove that Cos frac{pi}{5} + Cos frac...

Prove that
`Cos` `frac{pi}{5}` + `Cos` `frac{2pi}{5}` + `Cos` `frac{6pi}{5}` + `Cos` `frac{7pi}{5}` = 0

Promotional Banner

Similar Questions

Explore conceptually related problems

cos frac{3pi}{4}-iota sin frac{3pi}{4}

dy/dx = cos frac{x}{2} / 2

sin^-1 (sin frac {2pi}3 )

The value of (sin frac(pi)(8) + i cos frac(pi)(8))^(8)/((sin frac(pi)(8) - i cos frac(pi)(8))^(8)) is :

Prove that: sin(pi/10). cos(pi/5)=1/4

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that 4cos(2pi)/7dotcospi/7-1=2cos(2pi)/7dot

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .