Home
Class 9
MATHS
7/(sqrt5-sqrt3) =...

`7/(sqrt5-sqrt3) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt(7))/(sqrt(5)-sqrt(3))

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(2)), then x+y+xy=9(b)5(c)17(d)7, then

The greatest among sqrt(7) - sqrt(5) , sqrt(5) - sqrt(3) , sqrt(9) - sqrt(7) , sqrt(11) - sqrt(9) is

find the values of a and b in each of the following (i) (5+2sqrt3)/(7+4sqrt3) = a-6sqrt3 (ii) (3-sqrt5)/(3+2sqrt5)= asqrt5-(19/11) (iii) (sqrt2+sqrt3)/(3sqrt2-2sqrt3)=2-bsqrt6 (iv) (7+sqrt5)/(7-sqrt5)-(7-sqrt5)/(7+sqrt5)=a+(7/11)bsqrt5

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

sqrt(3)/(sqrt5+sqrt2-sqrt7)=

(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5) Is equal to

Show that (sqrt5+sqrt3)/(sqrt5-sqrt3)-(sqrt5-sqrt3)/(sqrt5+sqrt3)=2sqrt15