Home
Class 12
MATHS
Show that : lim(x rarr0)((a^(x)-1)/(x))=...

Show that : `lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr0)((x+1)^(5)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1-x)^(n)-1)/(x)

lim_(x rarr0)((x+1)^(5)-1)/(x)

lim_(x rarr0)((x+1)^(n)-1)/(x)