Home
Class 10
MATHS
9 sec^(2) A - 9 tan^(2) A =...

`9 sec^(2) A - 9 tan^(2) A` =

A

1

B

9

C

8

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise ASSERTION AND REASON BASED MCQs|7 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise CASE BASED MCQs I|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of 9sec^(2)A-9tan^(2)A

9sec^(2)A-9tan^(2)A is equal to (a)1(b)9(c)8 (d) 0

If 10 sec^(2)x - 9tan^(2)x= 13 and 0^@le x lt 90^@ then x = _____

Find the number of roots of the equation 16 sec^(3) theta - 12 tan^(2) theta - 4 sec theta =9 in interval (-pi,pi)

Prove that in an acute triangle ABC,the least values of Sigma sec A and Sigma tan^(2)A are 6 and 9 respectively.

Choose the correct option. Justify your choice. (i) 9sec^2A-9tan^2A= (a) 1 (b) 9 (c) 8 (d) 0

sec^(2)A sec^(2)B-sec^(2)A tan^(2)B-tan^(2)A sec^(2)B+tan^(2)A tan^(2)B=

Prove: tan^(2)A sec^(2)B-sec^(2)A tan^(2)B=tan^(2)A-tan^(2)B

If tan theta + sec theta = n, then sec ^(4) theta - tan ^(4) theta- 2 sec theta tan theta =

Prove that: 9sec^(2)theta-5tan^(2)theta=5+4sec^(2)theta